2,255 research outputs found

    Statistical model for collisions and recollisions of inertial particles in mixing flows

    Full text link
    Finding a quantitative description of the rate of collisions between small particles suspended in mixing flows is a long-standing problem. Here we investigate the validity of a parameterisation of the collision rate for identical particles subject to Stokes force, based on results for relative velocities of heavy particles that were recently obtained within a statistical model for the dynamics of turbulent aerosols. This model represents the turbulent velocity fluctuations by Gaussian random functions. We find that the parameterisation gives quantitatively good results in the limit where the \lq ghost-particle approximation' applies. The collision rate is a sum of two contributions due to \lq caustics' and to \lq clustering'. Within the statistical model we compare the relative importance of these two collision mechanisms. The caustic formation rate is high when the particle inertia becomes large, and we find that caustics dominate the collision rate as soon as they form frequently. We compare the magnitude of the caustic contribution to the collision rate to the formation rate of caustics.Comment: 9 pages, 4 figures, final version as publishe

    Advective collisions

    Full text link
    Small particles advected in a fluid can collide (and therefore aggregate) due to the stretching or shearing of fluid elements. This effect is usually discussed in terms of a theory due to Saffman and Turner [J. Fluid Mech., 1, 16-30, (1956)]. We show that in complex or random flows the Saffman-Turner theory for the collision rate describes only an initial transient (which we evaluate exactly). We obtain precise expressions for the steady-state collision rate for flows with small Kubo number, including the influence of fractal clustering on the collision rate for compressible flows. For incompressible turbulent flows, where the Kubo number is of order unity, the Saffman-Turner theory is an upper bound.Comment: 4 pages, 1 figur
    • …
    corecore